Regional carbon dioxide fluxes from mixing ratio data
نویسندگان
چکیده
We examine the atmospheric budget of CO2 at temperate continental sites in the Northern Hemisphere. On a monthly time scale both surface exchange and atmospheric transport are important in determining the rate of change of CO2 mixing ratio at these sites. Vertical differences between the atmospheric boundary layer and free troposphere over the continent are generally greater than large-scale zonal gradients such as the difference between the free troposphere over the continent and the marine boundary layer. Therefore, as a first approximation we parametrize atmospheric transport as a vertical exchange term related to the vertical gradient of CO2 and the mean vertical velocity from the NCEP Reanalysis model. Horizontal advection is assumed to be negligible in our simple analysis. We then calculate the net surface exchange of CO2 from CO2 mixing ratio measurements at four tower sites. The results provide estimates of the surface exchange that are representative of a regional scale (i.e. ∼106 km2). Comparison with direct, local-scale (eddy covariance) measurements of net exchange with the ecosystems around the towers are reasonable after accounting for anthropogenic CO2 emissions within the larger area represented by the mixing ratio data. A network of tower sites and frequent aircraft vertical profiles, separated by several hundred kilometres, where CO2 is accurately measured would provide data to estimate horizontal and vertical advection and hence provide a means to derive net CO2 fluxes on a regional scale. At present CO2 mixing ratios are measured with sufficient accuracy relative to global reference gas standards at only a few continental sites. The results also confirm that flux measurements from carefully sited towers capture seasonal variations representative of large regions, and that the midday CO2 mixing ratios sampled in the atmospheric surface layer similarly capture regional and seasonal variability in the continental CO2 budget.
منابع مشابه
Estimating daytime CO2 fluxes over a mixed forest from tall tower mixing ratio measurements
[1] Difficulties in estimating terrestrial ecosystem CO2 fluxes on regional scales have significantly limited our understanding of the global carbon cycle. This paper presents an effort to estimate daytime CO2 fluxes over a forested region on the scale of 50 km in northern Wisconsin, USA, using the tall-tower-based mixed layer (ML) budget method. Budget calculations were conducted for 2 years u...
متن کاملWhere do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model
[1] Characterizing flow patterns and mixing of fossil fuel-derived CO2 is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon (C) to investigate the distribution and fluxes of atmospheric fossil fuel CO2 across the state of California. We sampled C in annual C3 grasses at 128 sites and used...
متن کاملA Design for Unattended Monitoring of Carbon Dioxide on a Very Tall Tower
Unattended measurements of carbon dioxide (CO2) mixing ratio at three altitudes up to 496 m above the surface on a television transmitter tower in the southeastern United States have been made for a period of 4 yr. This report describes the design of the automatic tower measuring system in detail. A nondispersive infrared (NDIR) analyzer is used to measure the CO2 concentration continuously. Re...
متن کاملA regional high - resolution carbon flux inversion of North America for 2004
Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational s...
متن کاملRegional changes in carbon dioxide fluxes of land and oceans since 1980.
We have applied an inverse model to 20 years of atmospheric carbon dioxide measurements to infer yearly changes in the regional carbon balance of oceans and continents. The model indicates that global terrestrial carbon fluxes were approximately twice as variable as ocean fluxes between 1980 and 1998. Tropical land ecosystems contributed most of the interannual changes in Earth's carbon balance...
متن کامل